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Chapter X

Effects of Shear and Strain

1. Non-Uniformities.

An understanding of the response of a pre-mixed flame to non-uniformities

in the flow is important in many technological situations. To sustain a flare

"in & high-velocity stream the turbine engineer must provide anchors, which

generate strong sheér. The designer of an internal combustion engine is
concerned with burning rate in the swirling flow above the piston. Turbulence
is all pérvasive and then the flame is subject to highly unsteady shear and
strain. These situations are extremely complicated, of course, and it is
unlikely that mathematiéal analysis will ever provide detailed descriptions;
those nust bte left to empirical studies augmented by massive numerical computz-
tiong. Nevertheless, analysis of the response of a flame to a simple shear,
for example, can prcvide useful insight into the interaction mechanisn in

more complex situations. Indeed the answers to such elementary questions can
be used as a nuch-needed guide in studies of more complicated ones.

Moreover there are simple circumstances in which such enalysis has direct
significance. A burner flame experiences shear in the neighborhood of the rim,
and its quenching derends on the local character of that shear. A flame
immersed in a laminar boundary layer experiences both shear, due to velocity
variations across thg layer, and strain, due to streamwise variations, and its
quenching will depend on their local values.

For & constant-density flow the relative motion near a point is the

superposition of a simple shear and two simple strains (cf. Batchelor 1967,

p- T79). These two elementary flows, simple shear and simple strain, are

therefore basic to any discussion of the effect of non-uniformities on flames;
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the present chapter is for the most part devoted to them. Only premixed
flames are discussed and, except at the end (Sec. 5), the formulation adopted
is that of near-equidiffusional flames as simplified in Seec. VIII.6.

The fundamental question is whether or not a flame can be extinguished
by & non-uniform flow per se . In Sec. IX.5 it was shown that the proximity
of a cold wall can quench an equidiffusional flame, the mechanism being heat
loss from the combustion field rather than the geometrical constraint imposed
on it by the wall. If flow non-uniformities can induce a similar heat flux,
quenching will ocecur with the cold unburnt ges replacing the wall as heat
sink. But even if they cannot, we may still expeci unegqual diffusion of heat
and reactant (i.e. XA # 0) to provide other circumstances for which there is
quenching, since that is the case for the flame tips of Sec. IX.4. When 2
was sufficiently negative, the presence of a boundary quenched plane tips and

flame curvature queriched axisymmetric, w*thout the help of heat loss.

2. Response to Simple Shear.

Consider a plane parallel flow which is uniform for y < O but

linearly sheared for y <0, i.e.

(1) v = (uf,0)
where
1l for y > 0O,

(2) tly) =
l-wy for y < O.

In the limit U + o the equations with which we have to deal are

(3) £3(T,h)/ox= LO(T,h +AT) for - <y < Fly),
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(%) T=T,=H,

f 9n/3y = Lo(h) for F(x) <y < =,

these being the modifications of equations (IX.31,32) which take account of
the flow (2). With them go the Jump conditions (IX.34k), together with the

boundary conditions (IX.36) and

(5) T+>T,h+0 as y +>-=.

l’

The uniform part of the flow can support a steady plane deflagration
wave inclined at an angle such that the normal component of the gas speed
equals the adiabatic flame speed, and this is assumed to be the form of the
combustion field for y large and positive (Fig. 1). In other words, the
initial conditions (IX.29,30) still hold, and indeed the first for
-o <y < F(0). As the flame approaches the x-axis it is influenced by the
shear as soon as its preheat zone penetrates the lower half-plane. The
increased gas speed there may be expected to deflect the flame, so that its
slope decreases.

The above formulation is due to Buckmaster (1979a), who reaches the
following conclusions. For some values of the shear gradient « and
Lewis-number parameter A, the slope actually decreases to zero. At that
point the flame speed is zero and, according to the hypothesis of Sec. IX.L,
quenching occurs. Invariably the quenching point lies in the uniform region
althouzh the preheat zone has, of course, penetrated the shear regicn. For
the remaining values éf w and ) the flame is never quenched even though it
mey feil to renetrate the shear region. A rationalization for not being
quenched in the shear.region is that the non-uniformity, as measured by f£'/f,

is a maximum at y = O so that, if the flame manages to ecross the boundary,

it can.survive the ever-weaker non-uniformity beyond. Certainly there is a

i




TS T TR e e v e o s eRes

solution of the governing equations as y -+ -« corresponding to a locally
plane flame propagating with unit speed (cf. Sec. 9.5).

Clear evidence of the dichotomy is shown for u = 5 by the numerical
results plotted in Fig. 2. For A = O or 5 the flame penetrates the shear and
shows no sign of quenching; indeed no solution showed the flame speed
approaching zero in y < 0. But for XA = 10 the flame speed falls to zero
at the point @ outside the shear region. The figure also shows that the
shear has more effect on the flame as X increases, in contrast to flame

tips (Fig. IX.6) where the boundary, i.e. symmetry line, has less. Moreover,

the present trend does not agree with that for slowly varying flames in Sec. S.

The effect of increasing w can be seen from the limit w - «. There is
then a fully developed combustion field, i.e. an asymptotic solution as
X > © , in which the flame lies at a defirnite level in y > 0 and T,h
are independent of x . In fact, in the shear region away from the boundary

convection dominates for all ¥ , so that
(6) 9T/3x = dh/3¥x = 0 for y < O,

i.e. there is no dependence on yx anywhere. The problem is therefore reducei

to one in y > 0 only, under the boundary conditions
(7) T=T ,h=0 on y=0.

In the 1limit y » « the initial conditions may be ignored and the system then

has the solution

(8) T

T, + Yly/F(m), h = - AYly/F(m) for 0 <y < Flx),

(9) T = T* = Hl, h = -)\Yl for F("’) <Y < o,

e e o SR, 1 SRR Y

¢
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where

(10) F(e) = exp(ry,/21%)

is the asymptotic height of the flame. The expression (9v) violates the
boundary condition (IX.36) for h, showing that the limits y + » and x +
do not commute. There is an adjustment at large values of ¥y, which depends
on the history of thé flame; but that is of no importance for our purposes.

F(o) is large even for moderate values of \. On the other hand,
iunspection of Fig. 2 shows that flames are first affected by the shear when
F is about 2. The implication when w = «» 1is that, for sufficiently large
A > 0, there is a minimum in F, i.e. the flame speed must have fallen to zero
at some finite value of yx. Numerical soluéions of the limit problem (Fig. 3)
point to A = O as the critical value: for X < O the functi&h F decreases
monotonically to its asymptotic value (10), whereas for A > 0 it has a
minimun (which we havg taken to imply quenching). We conclude that a
sufficiently strong shear flow will prevent a flame from peaching the boundary
y = 0 and actually quenches it for J > 1.

Eventually the limit equetions break down and a new coordinate x/w is
needed, corresponding to significant diffusion in the shear region. Buckmaster
(1979a) argues that F increases again when A < 0 1is sufficiently large,
which implies quenching for I sufficiently smaller than one also. However,

no numerical results exhibiting such quenching have yet been obtained.

3. Response to Simple Strain.

In contrast to simple shear, the .variation of the essential velocity

component in simple strain is in its own direction rather than at right angles.
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The distinguished limit of Sec. VIII.6, in which the non-dimensional gas
velocity and the length scale on which it varies become unbounded but

their ratio remains fixed, leads to the governing equations (VIII.TO). The
unit of the velocity gradient represented by € is that of the flame

speed divided by the thickness under adiabatic conditions. As we shall see,

a velocity gradient that is small on this scale has little effect on the

D s O

flame, whereas a large enough gradient extinguishes it.
Fquations (VIII.70) hold ahead of the flame, i.e. for y > F(x). BEehind

the flame we have

(11) T=Ty=H,h=h for 0<y <F(x)

- : if (&) the wall is insulating or (b) the flame is located in equal opposing

e o mee i o £ PN ST PR PP

. jets {Fig. 4) so that Y
(12) sh/9y = 0 on y = 0.

(The condition ensures that wall quenching does not intrude.) For case (a)

the flame will in rcality be imbedded in a boundary layer (unless the Franiil

number ic very small), so that the model is more directly relevant to case (b).

We muct add the boundary conditions

(13) T+T,h+>0 as yoo
end th - Jump conditions (IX.3L).
‘ $ines x only eppears in F there is a sclution with the flame lyine
parallel to ¥y = 0, the constant value of Fo being given implicitly by
2

.2 -d

< d bt
(1%) g = %; e ecrfed cxp[—l%ﬂ~;ilila—— U P d2)],

g
2Hl m“erfe d
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T
where
(15) 8= (€/2)%, a = fx
The solution shead of the flame is
(16) T=T, + erfe(By)/erfec d
for y >
. | _g2.2 2

(17) h = h, erfe(gy) + T A [ Bye By erfe 4@ - de d erfe(gy)]

erfc d " lerfeld
where

2 -a®, 3
(18) hy = 2H n(28 e~ /7 erfe 4).

This determination of h, also completes the description (11) behind the
flame.

Of greatest interest ig the variation in stand-off distance F, with
the straining rate € (Fig. 5). There are two kinds of response, devending

on the value of A. TFor X < hHi, it is single-valued, with Fo decreasing

monotonically to zero at € = fc, vhere
2
(19) €c = exp(—l/2H1).

For € >€;, there is no solution. For A > hHi, the response is double-valued

for some values of € 3 and there is no solution beyond a value Ee, 2t vhich
=F

ﬁ}XTéiﬁon—zero. Corresponding values of €é and F_ for various values of

A are listed in Table 1 for the samc paramcter value Hl = 1.2 as in Fig. 5.

Yo
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Table 1

A Jfs5.7616.03]6.4817.03[7.5218.05[9.05{10.02[11.02{12.02)1k.08[16.00118.C

F 0 .23 .62]1.1111.5712.0713.05| 4.03| 5.05( 6.10| 8.29|10.36]|12.55

€ 1| .212{.194] .170| .146] .130] .126] .096] .082] .o72| .06k} .052] .ohh| .038

The physical picture is now clear. Suppose the strain is increased
from a snall value sufficiently slowly for the combustion field to Le quasi-
steady. The increase causes the flame to mcve closer to the stagnation noint.
If A 1is large enough, it reaches the stagnaticn point for the critical value
GC, and is extinguished. Otherwise extinction occurs for Ge, when it is
still a distance Fe avay. In the latter case the lower branch of the
response (where F, increases with € )is unstable, as has been shown by

Buckmaster (1279b). (His treatment does not rule cu other parts of 1hec

2]

response boing unstable too, so that the extinction picture above may have
to be modified.)

The flame speed W (Fig. 6) i.e. the gz speecd normal to the flame sheet,
has the value T F. As € » 0, so that §b+-m , it tends to the adiadutic
value 1; when € = €c it vanishes, since FO is zero. Like Eo it is
single-valued for A <bHi and partly double-valued for A > hHi. There 1s an
initial increase in W for A <-2Hi; otherwise it decreases monotonically
until € = 6; or Ge. It is therefore possible {or the flame to have a
speed greater than its adinbatic value, even thourh it is being strctched
at a positive rate.

In short, therc is a linit (dcpcnding on the Lewiz musber) to ihe anount

.

of strain thut a2 premixed flame can tolerate. The conclil ice. 1s cencictent with

the experimental fact that a flame held at the Zront of & bluff body can he
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blown off by increasing the gas speed sufficiently. Attachment is then

usually transferred to the rear.

Y. Response to More General Non-Uniformity.

Reduction to a parabolic problem occurs for general non-uniform flows
in which the velocity is everywhere large but changes proportionately over
correspondingly large distances (Buckmaster 1979b). An example is the
potential motion of a fast stream past a large cylinder, whose front stagnation
point was the subject of the last section. Such flows, when plane, are

characterized by velocity fields

(20) Y = Ug(x/U,y/U);

‘letting U + » gives a distinguished limit in which ¢ v remains finite.

We shall see that the effective part of the limiting motion is, on the x,y-sczl:,
made up of a fast uniform flow and a simple strain, both of which vary slowly.
Shéar is ineffective, so that the term general straining motion is appropriate.
Take curvilinear coordinates with x measuring distance along one
particular streamline and y distance from it. Away from a stagnation point
these will be slowly varying cartesian coordinates, since the curvature of
streamlines is vanishingly =mall. The angle between the flame sheet and an

intersecting streamline is also small, so that
(21) X = x/U end y

are appropriate variables for T uand h. Likewise the velocity field may

be approximated by

K
:




(22) Y= (qus - q(')y')’

where qo(x) is the speed on y = O and continuity has been taken into account.
Only leading terms have been retained, so that a simple shear due to variation

k. of the x-component in the y-direction is ignored. Uniformity breaks down at
large distances from the flame sheet, but it does not matter there. On the

x,y~-scale the velocity relative to that at any point is a simple strain with

el o

€= qé (sec. VIII.6). Together with the fast uniform flow (qu,O) at the

point, both of which vary with x , it makes up the effective part of the
limiting motion.
In the limit, only the approximation (22) enters into the governing

equations (XIII.62, 63), which become A

(23) (a9 3 = oY 3 (Tah) = L(T, b + AT

The response to an arbitrary streamwise velocity qO( X may be determined t
from the computer as easily as that to simple shear (Sec. 2). Note that

equations (VIII.6T7, 68), which were used in Sec. IX.4, are the special case

e = 1 when the strain vanishes everywhere. The simple shear flows discussed

in Sec. IX.5 and Sec. 2 are not of the type considered here since changes of

) the velociy field in the y-direction are large. As already noted, the analysis

breaks down at a stagnation point, so that equations (VIII.70) cannot be recovered.

Nevertheless, the stagnation-point solution in Sec. 3 has the required form for

large x, with 9 = € x, and hence provides initial conditions for any

9 ~ €x as x > 0 when the boundary conditions on T and h are corpatidble.




Two examples will be cconsidered, nomely

(24) _ |€sin y for 0 < y < m,
qo(x) =

(25) G‘(x_ 2x3/3 + x2/5) for y > O.

The first corresponds to potential flow around the cylinder and both asymptocte

€ x. If therefore the same boundary conditions as in Sec. 3 are imposed,

namely
(26) T+T,h+0 as y >,
(27) oh/3y =0 on y =0,

then the results obtained there provide appropriate initial conditions here.
Of course, behind the flame the appropriate solution of equationé (23) has
T=T,= Hl'
The flows (2L) and (25) are quite different in nature. For the first
the stretch, represented by the Karlovitz number qé, decreases monotonically
from € to -€ (Fig. Ta); but for the second it decreases from € to a
minimum of zero at yx = 1 and then increases indefinitely (Fig. Tb). These

characteristics are particularly relevant to an examination of the flame

speed
(28) W= (qF)',

which can deduced from the computatione by numericel differentiation.
Fig. 7 shows that W increases monotonically for the flow (2&); bubt

that for the flow (25) it increases initially, reaches e maximum around x = 1,

and then decreases. It is hard to resist the conclusion that there is an
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inverse correlation between the changes in flame speed and stretch, at
least for moderate values of A. The correletion is not precise (as we
have already seen in Sec. 3): in Fig. Tb the flame speed achieves its
maximum exactly at y = 1 for only one value of ) (wvhich appears to be
zero). But the general trend is undeniable.

The computations for the flow (25) show that the decrease in W from
its maximum continueé until zero is reached where, according to Sec. IX.h,
quenching occurs. The results therefore suggest the general conjecture that
a flame subjected to sufficiently strong and increasing strain will be
extinguished. Hitherto a sound mathematical basis for such a conjecture has

been lacking.

5. The Effects of Slowly Varying Shear and Strain.

The chapter ends with an examination of slowly verying flames under the
influence of simple shear and simple strain. For strain the results merge,
as JZ + 1 + 0, with those of near-equidiffusional flames, as A -+w; but for
shear they do not. We have no explanation to offer.

For simple shear, the g,n-coordinates of Sec. VIII.3 are now taken as

shown in Fig. 8. Then the velocity field to be inserted in equation (VIII.32)

is

(29) y = (Uf,0)

where 1 form> O
(30) fln) =

1-wn for n <O.
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If
- (31) n = F(g)
is teken to be the locus of the flame, then for n <0 we have
) 12y =35 _ 12, .1
(32) M= plU(l - W) |F (1 + F )73 v, = U(1-wF)sgnF'(1 + F °)772
! if the latter is measured in the s-direction shown. Hence
. L L)
. - . = X\ ' + "

(33) ., UMy~ MY v, =M sgn FI(1+F O)THp
and the basic equation (VIII.32) becomes - |

|3 h
(34)  F" = k(1-uF)F “enM
where k is the constant (IX.21).

The corresponding formulas for n > 0O are obtained on setting w = 0,
and then equation (IX.20), governing the shape of a flame tip in a uniform
flow, is recovered (with tany = F'). The appropriate solution is
(35) F' = —tan o
corresponding to & plane flame, although a curved flame (corresponding to *
] the tip) is also available when ;[ is greater than 1. We therefore take
(36) F(0) = 0, F'(0) = -tan o
‘ as initial conditions for the governing equation (3k) in n < O.

Fig. 9 shows thc effect of the shear. For f<1 the flame is bent

towards the flow direction at a rate thai increcages with w , but is never

actually quenched. On the cther hand, the flame bends awvay frém the flow




.

direction for:{_> l, again at a ra‘?e that increases with w . These results
N
are consistent with those obtainedAflame tips in a uniform flow (Sec. IX.3),

where a rounded tip was possible for 7 >1 but not for J < 1. However, they
do not merge with those for a near-equidiffusional flame (Sec. 2), where the
turniné gbility of the shear increased with A. (The inconsistency of Secs. 2
and IX.4 has already been noted in the later section.)

We turn now to simple strain, i.e. stagnation-point flow, where the results
do merge with those for near~equidiffusional flames. The comparison invelves
the so-called flat flames here; for J < 1 it turns out that such flames can
tolerate any amount of strain, but for ¥ >1 <there is a limit. .

With axes as shown in Fig. 10, the velocity field with which we have

to deal is
(37) y =€(g,-n).

For the locus (31) we find

(38) M=o €(eF + F)/(1+ FAYE, v, | =€(g - FF)/(1+ F'R)P

so that

M2n A (FFI-

Yy WMy -y, = o (1+F 2y Q& +eF
1

n ~1L 11
and the basic equation (VIII.32) becomes
2

)

(39) (52 FFOF" + (L+ F (eF' - F) = k(F + £F')3¢n M,

where

(ko) k = -215p €/,
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Solution of this equation requires two boundary conditions but only

one is obvious, namely the symmetry condition

(b1) F'(0) =0.

The difficulty reflects the elliptic nature of the problem and, for determinacy,
{ , some reference must be made to the far field. If, for example, we are dealing
with a fast flow past a correspondingly large cylinder (i.e. with € fixed)
then it is appropriate to look for a constant solution, corresponding to a

flame that varies on the scale of the cylinder. Such a solution is given by
_ 2.2 . -
(42) Moen ¥ = -205€°/k with M_=p € F.

Sivashinsky (1977), who considers the axisymmetric counterpart of the
+ present problem, proposes that such a cheocice is correct in all circumstances

but there is no evidence for his view. Indeed, completely acceptable solutions

are obtained bty giving F(0) a value that does not satisfy equation (42),
see Fig. 11. A constant solution is Just a separatrix or an asymptote in
the figure.

Fig. 12 shows that there is always a unique solution of equation (42)

for b >0 but that the condition

(43) € < -12/eb

must be met for b < O, and then there are two solutions. We conclude that
‘ there is always a flat flame for.J< 1 but that there is a limit to the
straining rate for / >1. To reconcile these results with those for near

[ equidiffusional flames note that here € is measured on the scale G_l so that
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‘for b > 0 can never be realized but that for b < O cang if, vhen .7 is:

hico. ool tate

NP T T

the limit (43) tending to infinity as Y> 1+ 0 is (b > -0) is compatible
with f; remaining finite there as X =+ ® (suggested by Table 1). On the
other hand, Ge + o gg A + -» ggrees with the absence of a limit here for
any £ > 1 (in particular J. =1 + 0).

Fig. 12 could have been introduced after the general relation (VIII.L3)

to suggest that extinction will occur whenever

T2
1 38A < % >
(bk) A ac >~ §o for b 0.

However, without a guarantee that such voluminal stretch is possible, the
speculation would have been idle. Stagnation-point flow provides the first
example, and so far the only one. If we restrict attention to flat flames,

then the voluminal stretch is constant and equal to € . The condition (kk)

greater than one, € 1is increased sufficiently slowly for the combustion figl:
t0 be quasi-steady, then extinction occurs when it reachers —Ti/be.

These remarks apply only to the constant sclutions in Fig. 12. The

non-constant solutions are available whatever the value of € or the sign

of b. No evidence was found of quenching in the computations (cf. Sec. 2)
i.e. the curves never became tangent to streamlines.
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